
PROCEDURAL PROGRAMMING:
SELECTION/BRANCHING

ASSOC. PROF. TUNÇ DURMAZ
tdurmaz@yildiz.edu.tr

MAY 31, 2021

mailto:tdurmaz@yildiz.edu.tr

SELECTION/BRANCHING
q So far, every piece of MATLAB code that we have seen

has consisted of a sequence of commands.
q This flow of control is handled behind the scenes by the

MATLAB interpreter.
q Matlab interpreter is a program running in the

background that
q reads the statements that you write and carries them

out one by one,
q allocating space for variables,
q writing values into those variables, and
q reading values from them,
q accessing elements of arrays,
q calling functions, and
q displaying results on the screen.

SELECTION/BRANCHING

q Executing the statements in the order that the
programmer wrote them is called sequential control.

q Sequential control is the most natural and the most
common sequence in any program written in any
programming language.

q It is the primary example of a control construct.
q A control construct is simply a method by which the

interpreter selects the following statement to be
executed after the execution of the current statement
has concluded.

SELECTION/BRANCHING

q Utilizing (or not) particular keywords, the programmer
tells the interpreter which construct to use

q So far, such keywords have been absent from our code,
and as a result, we have been utilizing only one type of
control construct—sequential control.

q In this part of the lecture, we will introduce keywords
that signal the interpreter to base its decision as to
which statement is to be executed
q not only on the order in which the statements are

written
q but also on the values of expressions.

q This new control construct is called selection or
branching.

SELECTION - if statements

q An if-statement is used when the programmer wishes to
have the interpreter choose whether or not to execute a
statement or set of statements on the basis of the values
of variables

SELECTION - if statements
A block is a set of
adjacent statements,
and each block in the
figure is controlled by
a control statement. In
the example code
that we showed
above, there is just
one statement (the
fprintf function call
statement), but in
general there can be
any number of
statements in a block.

SELECTION - if statements

q Here is what the improved function looks like:
function guess_my_number(x)
if x == 2
fprintf('Congrats! You guessed my number!\n’);
else
fprintf('Not right, but a good guess.\n’);
end
q We have used another selection construct—the if-else-

statement—and to do that we’ve introduced another
keyword—else. This statement selects one of two
statements to be executed but, as in the case of the if-
statement above, each of these statements could be
replaced by a block of two or more statements.

SELECTION - if statements

q Here is the schematic of if-else statement:

SELECTION - if statements

q Let’s improve our function just a bit by trying to cheer
up the poor user who fails to pick the correct number:

function guess_my_number(x)
if x == 2
fprintf('Congrats! You guessed my number!\n’);
else
fprintf('Not right, but a good guess.\n’);
end
q The new keyword is elseif . It is used in a new

construct−the if-elseif-else- statement, and it allows us
to check a second condition.

SELECTION - if statements

SELECTION - if statements

q If we wanted to require a bit more thinking on the part
of the person trying to answer the “ultimate question”,
we could omit the else clause from our last example to
get a harder ultimate_question:

SELECTION - if statements

q So far, our
examples have
selected from
among one, two,
or three blocks
of code, but any
number of blocks
can be included
by including
additional elseif
keywords.

SELECTION - The return statement
q There is a new keyword in the code above: return.
q When a return-statement is executed (in any

programming language), it halts the function in which it
appears, in this case, day_of_week, and returns control
to the caller of the function. (When return is executed in
the Command Window, it does nothing; in a script, it
causes the script to halt, and control is returned to the
Command Window)

q If that return-statement had been omitted, execution
would have continued to the final if-else-statement:

SELECTION - The conditional
q The name for the expression that follows the keywords

if and elseif is conditional.
q A conditional is the expression that determines whether

or not a block in an if-statement is executed.
q It can have one of two values—true or false.
q If it is true, the block is executed; if it is false, the block

is not executed.
q We have seen several simple examples already:

x == 2, x == 42, x < 42, n == 1, n ==
2, ..., and day_type == 1.

SELECTION - If Statement Summary

• A relational operator produces a value that depends on the relation between the
values of its two operands.

• The operators, ==, and <, which we have seen in if-statements above, are examples
of relational operators.
• The operator == is symbolized by two equal signs (a notation borrowed from C/C++). It is
the “is-equal-to” operator, or “equals” operator, and it means exactly what both names imply.
When we use it as a conditional in an if-statement, it causes the block it governs to be
executed if and only if its first operand is equal to its second operand. Note that this operator
is very different from the assignment operator, which is symbolized by just one equal sign and
which causes the value of the variable at its left to be set to the value at its right.

• The operator symbolized by < is the “is-less-than” or “less then” operator, and it also has the
meaning we would expect. When we use it as a conditional in an if-statement, it causes the
block it governs to be executed if and only if its first operand is less than its second operand.

SELECTION - Relational Operators

SELECTION - Relational Operators

• There are six relational operators:

SELECTION - Relational Operators

• Relational operators can appear outside control statements and they can produce a value.

• In MATLAB, when the operator == finds that its first operand is not equal to its second operand,
it returns the value zero, which means “false”.

• When the == operator finds that its first operand is equal to its second operand, it returns the
value 1, which mean “true”.

SELECTION - Relational Operators

• Every the relational operator returns 0 when its expression is false and 1 when
its expression is true.

• In fact all the arithmetic operators have higher precedence than all the

relational operators.

SELECTION - Relational Operators
• When an expression involves division, there is a danger that we may divide by zero, as in this

example:

• We could handle that with an if-statement in the following way:

• It is also possible to accomplish the same thing with a single arithmetic expression involving a
relational. operator as follows:

• The following one sets z to 0, instead of x, when y is zero:

SELECTION - Relational Operators

• A convenient feature of the relational operators is that they are array
operators. Thus, by giving them two operands that are arrays of the same size

and shape, we can compare many pairs of values with just one expression.

• Also, like the array operators, if one operand is a scalar, then the other
operand can have any size and shape, allowing us to compare many values to
one value.

SELECTION - Logical Operators

• A logical operator produces a value that depends on the truth of its two
operands.

• There are three logical operators:

SELECTION - Logical Operators
• Consider the following example:

• The && operator takes two operands. If both are true (values are nonzero), then it
returns true (value of 1). Otherwise, it returns false (value of 0). To be clear, if either
one of its operands is false (value of 0), it returns false (value of 0). This is the normal,
everyday meaning of the word “and”.

SELECTION - Logical Operators
• In the expression, x <= y && y <= z , the first operand of the logical “and” operator && (i.e., the operand to its

left), x <= y, is evaluated first, and if that operand is false, then the && operator returns false (value of 0)—
without evaluating its second operand at all!

• It ignores its second operand when its first operand is false because evaluating the second operand would be a
waste of time. Regardless of whether that second operand is true or false, the answer will be false whenever the
first operand is false.

• Skipping the evaluation of the second operand because its value will have no effect on an operator’s result
is called short circuiting.

Schematic of short-circuiting for &&. The flow of
control is shown within a short-circuiting logical “and”
operation: &&. The first operand of && is red, and
its possible outputs–true or false—are outlined in
red. The second operand of && is green, and its
possible outputs are outlined in green. The two
possible outputs of && are outlined in blue. If the
output of the first operand is false, then the path
labeled “short-circuit” is followed, bypassing the
evaluation of the second operand.

SELECTION - Logical Operators
• There is a second short-circuiting logical operator—the logical “or” operator,

symbolized by ||.

• It returns true (value of 1) if at least one of its operands is true—the first one,
the second one, or both—and (value of 0) if both operands are false.

• Consider the example below:

SELECTION - Logical Operators
• Short-circuiting takes place if the first operand is true, because in that case, the

||operator will return 1, regardless of the value of the second operand.

Schematic of short-circuiting for ||.
The flow of control is shown within a
short-circuiting logical “or” operation:
||. The first operand of || is red, and
its possible outputs –true or false—are
outlined in red. The second operand of
|| is green, and its possible outputs
are outlined in green. The possible
outputs of || are outlined in blue. If
the output of the first operand is true,
then the path labeled “short-circuit” is
followed, bypassing the evaluation of
the second operand

SELECTION - Logical Operators
• Short-circuiting takes place if the first operand is true, because in that case, the

||operator will return 1, regardless of the value of the second operand.

Short circuiting may seem of little importance,
because it may seem to be a trivial matter
whether or not one operand is evaluated.
However, it can save a lot of time if the second
operand requires a long time to evaluate.

SELECTION - Logical Operators
• In the table below, the outputs of the logical “and” operator && and the logical “or” operator

|| are given for their four possible inputs and the outputs for the related function xor (“exclusive
or”) is given as well.

• There is no operator for xor. It is a function that takes two inputs as for example: xor(x,y).

• It should be noticed that the inputs are 0 and “nonzero”, instead of 0 and 1. These are MATLAB’s
denotations of the values that are treated as meaning false and true when used as inputs to
logical operations.

• Note that up to now we have seen only the number 1 used to mean true because that is the
value that all the relational and logical operators return when their expressions are true.

SELECTION - Logical Operators

• These operators allow any value to be used as input, and among all possible
input values, only zero means false. Here are examples of non-zero values
being used as input to && and ||:

SELECTION - Logical Operators
• The third operator is the logical “not” operator, symbolized by ~

• The “not” operator is a unary prefix operator, meaning that it takes only one operand and it
comes before its operand.

• Consider the following example:

• The evaluation of the conditional proceeds as follows:
• (1) the relational operation x < y is evaluated,

• (2) the relational operation x < z is evaluated,

• (3) the logical “and” operation x < y && x < z inside the parentheses is evaluated, and

• (4) the not-operator is applied to the result. If the value produced by the “and” operation is 1 (meaning
true), then the not-operation returns 0 (meaning false). If the value of the “and” operation is 0 (false), then
the not-operation returns 1 (true).

• In other words, ~ merely changes a zero to a 1 and a nonzero value to a zero.

SELECTION - Logical Operators
• Like the relational operators, but unlike && and ||, the operator ~ is an array

operator: Thus, it can be applied to an array producing a “not” operation on

each element:

SELECTION - Logical Operators
• Two more logical operators:

• “ELEMENT-WISE” VERSIONS OF THE LOGICAL “AND” OPERATOR AND THE LOGICAL “OR” OPERATOR.

• These operators are symbolized by a single & and a single |

• Like their double-symbol counterparts, they are both binary operators, and they perform the
same logical operations as they do, namely, “and” and “or”.

• However, these operators, like the relational operators and ~, are array operators: They are the
array versions of && and ||, each of which can be applied only to scalars. Like the other
binary array operators, they can also take one scalar operand and one non-scalar operand.

SELECTION - Operator Precedence
• The table below gives the complete precedence table for all MATLAB operators:

• When there are two or more operators of the same precedence, left-to-right associativity is used, meaning that
the order of operation is from left to right. Parentheses can override this associativity rule also.

• If you are in doubt, then anyone who reads your code will probably be in doubt too. In those cases, even if you
know the rules, you would do well to add redundant parentheses to make the order of operations perfectly
clear.

• MATLAB makes it easy to review the table. All you have to do is type help precedence in the Command Window

SELECTION - Nested Selection Statements
• We refer to the inclusion of one control construct inside another construct as

nesting.

• For our first example, we will use nesting to rewrite a function that we wrote
earlier without nesting—ultimate_question. We repeat that function below (cf.
Slide 9):

• We used this function to introduce the elseif clause, and that is the best way to
write it, but in order to show how nesting works, here is a version with nesting
that does not use elseif:

SELECTION - Nested Selection Statements

